Penulis Topik: Imaginary Numbers & Negative Powers  (Dibaca 1020 kali)

0 Anggota dan 1 Pengunjung sedang melihat topik ini.

Offline trfrm

  • Jr. Member
  • **
  • Tulisan: 57
  • Karma: +1/-0
  • Jenis kelamin: Pria
    • Lihat Profil
    • thescienceforum - trfrm
Imaginary Numbers & Negative Powers
« pada: Juli 20, 2018, 11:16:51 AM »
Dalam Nama Bapa dan Putera dan Roh Kudus. Amin.

Kutip dari: Markus Hanke;397013
Remember that anything to the power of zero always yields 1; that is how it is defined.

Excuse me ... . :)

$x^0=1$ if $x\neq0$ ... .

If $x=0$, then $x^0=0^0$ is undetermined ... because

$\displaystyle\lim_{x\rightarrow0^+}0^x=0$, and $\displaystyle\lim_{x\rightarrow0^-}0^x$ is undetermined ... .

But, however, $\displaystyle\lim_{x\rightarrow0}x^0=1$ ... .

Agnus Dei, qui tollis peccata mundi.



\[ \sum_{j=0}^\infty \frac{1}{j!(n-j)!} = \frac{2^n}{n!} \]