Penulis Topik: Menurunkan Hukum Arus Kirchhoff dari Hukum Ampere  (Dibaca 1781 kali)

0 Anggota dan 1 Pengunjung sedang melihat topik ini.

Offline cotrans

  • Administrator
  • Jr. Member
  • *****
  • Tulisan: 57
  • Karma: +2/-0
    • Lihat Profil
    • MISTERI PRIVE
  • Bidang Minat Fisika: Lainnya
Menurunkan Hukum Arus Kirchhoff dari Hukum Ampere
« pada: Februari 17, 2020, 07:43:18 PM »
Benedictus qui venit in nomine Domini.

\section{Menurunkan Hukum Arus Kirchhoff dari Hukum Ampere}

Hukum arus Kirchhoff dapat diperoleh dari persamaan kontinyuitas yang diperoleh dari hukum Ampere.

Hukum Ampere adalah
\[ \nabla\times\vec{H} = \vec{J} + \partial\vec{D}/\partial t. \]
Pengambilan divergensi pada kedua ruas persamaan terakhir menghasilkan
\[ 0 = \nabla\cdot\vec{J} + \partial\rho/\partial t, \]
di mana $\nabla\cdot\vec{D} = \rho$ merupakan hukum Gauss.

Persamaan terakhir ini merupakan persamaan kontinyuitas untuk elektromagnetisme.

Pengintegralan kedua ruas persamaan kontinyuitas tersebut ke seluruh volume $V$, dengan menerapkan teorema divergensi Gauss, menghasilkan
\[ 0 = \oint_{\partial V}\vec{J}\cdot d^2\vec{r} + \frac{dq}{dt}, \]
di mana $q = \int_V \rho d^3\vec{r}$ adalah muatan listrik pada $V$.

Untuk volume $V$ yang mendekati titik matematis yang berupa simpul, maka $\oint_{\partial V}\vec{J}\cdot d^2\vec{r} = 0$.  Sementara itu $I := dq/dt = \sum_{j=1}^n I_j$ adalah total arus listrik yang melewati titik simpul tersebut, sehingga
\[ \sum_{j=1}^n I_j = 0. \]
Inilah hukum arus Kirchhoff, dengan menganggap bahwa $I_j$ bernilai positif apabila arus keluar dari simpul, dan bernilai negatif apabila arus masuk ke simpul.  Kesepakatan sebaliknya bolehlah ditetapkan, asalkan konsisten.

Dalam Nama Bapa dan Putera dan Roh Kudus. Amin.



« Edit Terakhir: Februari 17, 2020, 07:49:38 PM oleh cotrans »