Namo amitabha.
Excuse me ... .
We can define the signature of a real number $x$ as
$\textrm{sgn}\,{x}:=\begin{cases}1&\textrm{if}~x>0\\0&\textrm{if}~x=0\\-1&\textrm{if}~x<0\end{cases}$ ,
then its absolut value is $|x|=x\,\textrm{sgn}\,x$ ... .
The unit-step-function is $u(x):=(\textrm{sgn}\,x+1)/2$ ... .
The delta Dirac $\delta(x)$ is defined such that $\int_{-\infty}^\infty\delta(x-y)\,f(x)\,dx=f(y)$ where $f$ is any integrable-real-function, and $y$ is any real number ... .
The derivative of unit-step-function is delta Dirac ... . $d\,u(x)/dx=\delta(x)$ ... .
Since $\textrm{sgn}\,x=2u(x)-1$, then $d\,\textrm{sgn}\,x/dx=2\,\delta(x)$ ... .
$d\,|x|/dx=d\,(x\,\textrm{sgn}\,x)/dx=\textrm{sgn}\,x+2x\,\delta(x)$ ... .
$\int\textrm{sgn}\,x\,dx=|x|+\textrm{constant}$ ... .
$\int\,u(x)\,dx=(|x|+x)/2+\textrm{constant}$ ... .
$\int\,|x|\,dx=\frac{1}{2}x|x|+\textrm{constant}$ ... .
Are those statements valid for any real number $x$ ... ?
Thank you and see you ... .
Allahu Akbar.