Penulis Topik: Segitiga Geodesik yang Panjang Ketiga Sisinya Nol di Ruang Minkowski  (Dibaca 1188 kali)

0 Anggota dan 1 Pengunjung sedang melihat topik ini.

Offline Roni

  • Administrator
  • Full Member
  • *****
  • Tulisan: 107
  • Karma: +100/-0
  • Jenis kelamin: Pria
  • I'm a mathematical physicist.
    • Lihat Profil
    • Situs Roni
  • Bidang Minat Fisika: Fisika Matematis
Horas.

\section{Segitiga Geodesik yang Panjang Ketiga Sisinya Nol di Ruang Minkowski}

Persamaan Geodesik pada sebuah manifold licin $M \subseteq \mathbb{R}^m$ berdimensi $n$ yang terbenam di ruang $\mathbb{R}^m$, yang dilengkapi dengan tensor metrik $g := g_{ij}\vec{e}^i\otimes\vec{e}^j$, di mana $g_{ij} \in \mathbb{R}$ adalah komponen kovarian dari $g$, $\vec{e}^i := \nabla q^i$, dengan $\vec{r} \in M$ adalah vektor posisi yang bergantung pada koordinat umum $q^i \in \mathbb{R}$, adalah
\[ \ddot{q}^i + {\Gamma^i}_{jk}\dot{q}^j\dot{q}^k = 0. \]
Di sini, $\dot{q}^i := dq^i/d\lambda$ dan $\ddot{q}^i := d\dot{q}^i/d\lambda$ dengan $\lambda \in \mathbb{R}$ adalah parameter dari $q^i$, serta
\[ {\Gamma^i}_{jk} := \frac{1}{2}g^{il}\left(\frac{\partial g_{jl}}{\partial q^k} + \frac{\partial g_{kl}}{\partial q^j} - \frac{\partial g_{jk}}{\partial q^l}\right) \]
adalah lambang Christoffel.  Untuk metrik Minkowski, $n = 4$, serta $g = \eta$, di mana $\eta_{00} = c^2$, $\eta_{11} = \eta_{22} = \eta_{33} = -1$, dan $(\eta_{ij})_{j \neq i} = 0$, dan $q^0 := t$, $q^1 := x$, $q^2 := y$, $q^3 := z$, di mana $c$ adalah kelajuan cahaya dalam ruang hampa.  Di sini, $t \in \mathbb{R}$ adalah waktu, dan $(x, y, z) \in \mathbb{R}^3$ adalah ruang fisis.  Oleh karena itu, di ruang Minkowski, berlaku ${\Gamma^i}_{jk} = 0$ untuk setiap $i, j, k \in \{ 0, 1, 2, 3 \}$, sehingga persamaan geodesiknya menjadi $\ddot{q}^i = 0$ alias $q^i = \alpha^i\lambda + \beta^i$ di mana $\alpha^i, \beta^i \in \mathbb{R}$ adalah tetapan yang hendak dicari kemudian.  Apabila $q^i = q^i_0$ ketika $\lambda = 0$, serta $q^i = q^i_1$ ketika $\lambda = 1$, maka diperoleh
\[ q^i = (q^i_1 - q^i_0)\lambda + q^i_0. \]
Tentu saja, $\dot{q}^i = q^i_1 - q^i_0$.  Jarak antara titik $(t_0, x_0, y_0, z_0)$ dan $(t_1, x_1, y_1, z_1)$ dalam ruang Minkowsi tentu saja adalah
\[ s_{01} := \int_0^1 \sqrt{g_{ij}\dot{q}^i\dot{q}^j}d\lambda. \]
Karena $g_{ij}$ konstan dan $\dot{q}^i$ juga konstan, maka diperoleh
\[ s_{01} = \sqrt{c^2(t_1 - t_0)^2 - (x_1 - x_0)^2 - (y_1 - y_0)^2 - (z_1 - z_0)^2}. \]
Agar $s_{01} = 0$, maka haruslah
\[ c(t_1 - t_0) = \pm\gamma_{01} \]
di mana $\gamma_{01}$ didefinisikan sedemikian rupa
\[ \gamma_{01} := \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2}. \]
Andaikan ada sebuah segitiga geodesik di ruang Minkowski yang ketiga titik sudutnya adalah $(t_1, x_1, y_1, z_1)$, $(t_2, x_2, y_2, z_2)$, dan $(t_3, x_3, y_3, z_3)$, sehingga dalam hal ini terdapat $4 + 4 + 4 = 12$ peubah bebas.  Agar panjang ketiga sisi segitiga tersebut bernilai nol, maka haruslah dipenuhi
\[ c(t_2 - t_1) = \pm_{12}\gamma_{12}, \]
\[ c(t_3 - t_2) = \pm_{23}\gamma_{23}, \]
\[ c(t_1 - t_3) = \pm_{31}\gamma_{31}. \]
Karena dari ke-$12$ buah peubah bebas itu terdapat $3$ buah persamaan sebagai kendala, maka cacah peubah bebas sisanya menjadi $12 - 3 = 9$ buah peubah bebas, serta terdapat $3$ buah peubah tak bebas, yaitu $t_1, t_2, t_3$, yang akan dicari dengan metode matriks dan determinan.  Penyajian matriks dari ketiga persamaan terakhir adalah
\[ \begin{pmatrix} -c & c & 0 \\ 0 & -c & c \\ c & 0 & -c \end{pmatrix} \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix} = \begin{pmatrix} \pm_{12}\gamma_{12} \\ \pm_{23}\gamma_{23} \\ \pm_{31}\gamma_{31} \end{pmatrix}. \]
Karena
\[ \Delta := \begin{vmatrix} -c & c & 0 \\ 0 & -c & c \\ c & 0 & -c \end{vmatrix} = 0, \]
serta $\Delta_1$, $\Delta_2$, dan $\Delta_3$ semuanya tidak nol, sedemikian rupa $t_1 = \Delta_1/\Delta$, $t_2 = \Delta_2/\Delta$, dan $t_3 = \Delta_3/\Delta$, maka diperoleh kesimpulan bahwa tidak mungkin ada sebuah segitiga geodesik di ruang Minkowski yang panjang ketiga sisinya semuanya nol.

Dalam Nama Bapa dan Putera dan Roh Kudus. Amin.



Selamat datang di forum ini. :)