Penulis Topik: Relativistic KE  (Dibaca 1671 kali)

0 Anggota dan 1 Pengunjung sedang melihat topik ini.

Offline trfrm

  • Jr. Member
  • **
  • Tulisan: 57
  • Karma: +1/-0
  • Jenis kelamin: Pria
    • Lihat Profil
    • thescienceforum - trfrm
Relativistic KE
« pada: Juli 20, 2018, 01:26:43 PM »
Salam sejahtera.

I have an alternative form of the relativistic kinetic energy, that is

$\displaystyle{T}=\frac{|\mathbf{p}|^2}{m+\sqrt{m^2+|\mathbf{p}|^2/c^2}}$.

If $c\to\infty$, it will reduce to $T=|\mathbf{p}|^2/(2m)$, the Newtonian kinetic energy.

http://www.thescienceforum.com/physics/42613-relativistic-ke.html#post543832

Terpujilah Kristus.



« Edit Terakhir: Juli 20, 2018, 01:34:42 PM oleh trfrm »
\[ \sum_{j=0}^\infty \frac{1}{j!(n-j)!} = \frac{2^n}{n!} \]

Offline trfrm

  • Jr. Member
  • **
  • Tulisan: 57
  • Karma: +1/-0
  • Jenis kelamin: Pria
    • Lihat Profil
    • thescienceforum - trfrm
Re:Relativistic KE
« Jawab #1 pada: Juli 20, 2018, 01:33:29 PM »
Namo Buddhaya.

The limit $c\to\infty$ is non-relativistic limit . . .

Sayonara zetsubou sensei.



\[ \sum_{j=0}^\infty \frac{1}{j!(n-j)!} = \frac{2^n}{n!} \]