Penulis Topik: Circular Motion  (Dibaca 1415 kali)

0 Anggota dan 1 Pengunjung sedang melihat topik ini.

Offline trfrm

  • Jr. Member
  • **
  • Tulisan: 57
  • Karma: +1/-0
  • Jenis kelamin: Pria
    • Lihat Profil
    • thescienceforum - trfrm
Circular Motion
« pada: Juli 20, 2018, 11:49:45 AM »
Bismillahirrahmanirrahim.

Excuse me ... .

Consider a rigid straight rod $OP$ which be rotated which the rotary axis through $O$ and prependicular to $OP$ with constant angular frequency $\omega$ ... . Length of $OP$ is $R$ ... . In non-relativistic classical mechanics, the linear speed of $P$ is $v=\omega{R}$ constant ... . But if $R>c/\omega$, where $c:=299792458\,\textrm{m/s}$ is speed of light in vacuum, then $v>c$ ... . How can it ... ?

Is it valid to regard that its linear speed is $v=c\tanh(\omega{R}/c)$, so that its maximum linear speed is $c$ ... ?

The non-relativistic limit ($c\to\infty$) is

$\displaystyle\lim_{c\to\infty}v=\lim_{\epsilon\to0}\frac{\tanh(\epsilon\,\omega{R})}{\epsilon}=\omega{R}$ ... .

Is the approximation of this conjecture valid ... ?

Thank you ... .

http://www.thescienceforum.com/physics/34511-circular-motion.html#post406032

Gloria in excelsis Deo.



\[ \sum_{j=0}^\infty \frac{1}{j!(n-j)!} = \frac{2^n}{n!} \]