Terpujilah Kristus.
Excuse me ... .

In non-relativistic mechanics, the Galilean transformation will yield the Galilean velocity addition formula ... , whereas ... , in the special theory of relativity, the Lorentz’s transformation of space-time will yield the Einstein’s velocity addition formula ... . The Einstein’s velocity addition formula, which reduce to Galilean velocity addition formula if the magnitude of the velocities are much smaller than $c\approx299792458\,\textrm{m/s}$ (speed of light in vacuum) ... .
If the velocity of particle $A$ and $B$ are $\mathbf{v}_A$ and $\mathbf{v}_B$, respectively, relative to observer $O$ , and the velocity of observer $O'$ is $\mathbf{V}$ relative to observer $O$ , then
the velocity of $A$ relative to $O'$ is $\displaystyle\mathbf{v}'_A=\frac{\mathbf{v}_A+(\Gamma-1)(\mathbf{v}_A\cdot\mathbf{V})\mathbf{V}/|\mathbf{V}|^2-\Gamma\mathbf{V}}{\Gamma(1-\mathbf{v}_A\cdot\mathbf{V}/c^2)}$ , and
the velocity of $B$ relative to $O'$ is $\displaystyle\mathbf{v}'_B=\frac{\mathbf{v}_B+(\Gamma-1)(\mathbf{v}_B\cdot\mathbf{V})\mathbf{V}/|\mathbf{V}|^2-\Gamma\mathbf{V}}{\Gamma(1-\mathbf{v}_B\cdot\mathbf{V}/c^2)}$ ,
where $\Gamma:=(1-|\mathbf{V}|^2/c^2)^{-1/2}$ ... .
If we want such that $\mathbf{v}'_B=-\mathbf{v}'_A$ , we will get an equation
$\displaystyle\frac{|\mathbf{V}|^2(\mathbf{v}_B-\Gamma\mathbf{V})+(\Gamma-1)(\mathbf{v}_B\cdot\mathbf{V})\mathbf{V}}{c^2-\mathbf{v}_B\cdot\mathbf{V}}=\frac{|\mathbf{V}|^2(\Gamma\mathbf{V}-\mathbf{v}_A)+(1-\Gamma)(\mathbf{v}_A\cdot\mathbf{V})\mathbf{V}}{c^2-\mathbf{v}_A\cdot\mathbf{V}}$ ,
which has three components because the equation is 3-vector equation ... .
We are asked to find $\mathbf{V}$ alias $(V_x,V_y,V_z)$ from the vector equation (alias three scalar component equations) ... .
Does there exist other methods to find $(V_x,V_y,V_z)$ from three simultaneous non-linear scalar equation which containing $(V_x,V_y,V_z)$ ... ?
Does the solution for $\mathbf{V}$ of this vector equation must be numerical solution ... ? Does there exist an analytical solution of $\mathbf{V}$ ... ?
Thank you very much ... .

Om Swastyastu.