KAMP
Kategori Umum => Matematika => Topik dimulai oleh: trfrm pada Juli 19, 2018, 06:26:48 PM
-
In real algebra, the null (0) can be reached from left and from right ... .
In complex algebra, the null (0) can be reached from all directions ... .
-
$(1 - 1 + 1 - 1 + \cdots)$ is not 0 ... because we don't know when the series ends ... . :)
-
But one infinite series I do find confusing is $1 - 2 + 3 - 4 + 5 - \cdots$, which apparently sums to $1/4$ !
\[ 1 - 2 + 3 - 4 + 5 - 6 + \cdots \]
\[ = (1 + 3 + 5 + \cdots) - (2 + 4 + 6 + \cdots) \]
\[ = \sum_{j=0}^\infty (2j - 1) - \sum_{j=1}^\infty 2j \]
\[ = -\sum_{j=1}^\infty 1 \]
is negative infinity ... ,
so this series is divergent ... .
I'm sorry if I do mistake ... . :(